Search 4,000 EV News articles

Monday, July 3, 2017

Honda team up with Hitachi in EV motor joint venture

Hitachi Automotive Systems, Ltd. and Honda Motor Co., Ltd. today announced the establishment of a joint venture company for the development, manufacture and sales of motors for electric vehicles on the premises of Hitachi Automotive Systems in Hitachinaka-shi, Ibaraki Prefecture.

As announced on February 7, 2017, the two companies have conducted discussions based on a Memorandum of Understanding signed on February 3, and entered into a joint venture agreement on March 24 to make more tangible preparations to establish the new company.

The newly established company will receive a financial grant from Ibaraki Prefecture as it has been recognized as a relevant project that "promotes the establishment of corporate head office functions" within the prefecture.

The new company will respond to the growing global demand from automakers for electric vehicle motors by developing competitive motors that combine the expertise of the two companies.

Automakers are increasingly teaming up with parts suppliers to build components for the fast-growing EV segment as a way to expand product line-ups while containing high development costs.

"Producing motors is capital intensive, so rather than just manufacturing them for our own purposes, we would like to produce in large volumes with the possibility of supplying a variety of customers," said Honda Chief Executive Officer Takahiro Hachigo.

"In pairing up with Hitachi, we're hoping to tap into its expertise in volume production."

The venture will be 51 percent owned by Hitachi Automotive Systems Ltd and 49 percent held by Honda, the two companies said.

It will build motors to be used in petrol hybrids, plug-in hybrids and battery-electric cars, and will have sales and manufacturing functions in the United States and China in addition to Japan, they said.

Hitachi Automotive Systems is a wholly owned subsidiary of Hitachi Ltd and longtime supplier of components including engine and brake parts to Honda.

It counts the alliance of Nissan Motor Co Ltd and Renault SA as its biggest client, accounting for around one-third of annual sales. Other customers include Toyota Motor Corp, Ford Motor Co and Volkswagen AG.

Tuesday, June 13, 2017

Honda's all-electric NSX 4-Motor EV is more advanced than any Tesla

Honda's head of research and development, Sekino Yosuke, has revealed the next-generation Honda NSX could be based on the firm’s 1,000 hp Pikes Peak race car, the NSX-inspired 4-Motor Acura EV Concept.

The 4-Motor Acura EV finished third overall at the Pikes Peak hill climb in 2016. That was thanks to its all-electric all-wheel-drive powertrain, comprising four electric motors that developed around 740 kW and 800 Nm of torque with a 70 kwh lithium-ion battery pack and a kerb weight of only 1,500 kg. Honda claims the electric NSX is capable of 0-100 km/h in 2.5 seconds and 0-200 km/h in 6.2 seconds.

With the current all wheel drive hybrid NSX having only been on sale since last year, an all-new NSX is unlikely to be launched before 2023, when battery technology is expected to have progressed significantly.

Honda first demonstrated a 4-Motor EV CR-Z prototype in 2015 with journalists who test drove the vehicle suggesting torque vectoring gave it cornering ability in a whole other league to a Model S.

While there's no denying Tesla, especially with ludicrous mode, have re-calibrated the auto-industry's definition of 'quick', it's probably less well known that Tesla's powertrain is actually based on 1990s technology with the 3 phase AC induction motor and controller designs originally licensed from EV1 drive system engineer Alan Cocconi.

Unlike current high performance all-wheel drive electric vehicles, like Tesla's Model S P100D, which use 2x electric motors and conventional mechanical differentials, Honda's electric NSX features four electric motors — one for each wheel.

With a dedicated motor at each corner, the Super Handling All-Wheel Drive (SH-AWD) system can precisely apply either positive or negative torque individually to each wheel. This opens the door to torque vectoring and full-time active yaw control - something that will make consumer EVs safer and more energy efficient.

How does this work? Imagine electronic stability control that, instead of applying friction brakes (wasted energy), applies negative torque (regenerative braking) to individual wheels. Unlike friction-brake based ESC, the NSX 4-Motor system can also apply positive torque to individual wheels. Not only that but positive and negative torque can be applied simultaneously across the vehicle adjusting pitch, roll, and yaw to accurately position the vehicle along any vector. Combining that range of precise control with a multi gyro inertial measurement platform unlocks an entirely new level of safety and high performance active dynamic control.

While it might be another 5-6 years before Honda's 4-Motor Super Handling All-Wheel Drive makes it into production, the team at Evans Electric are developing an AWD torque vectoring system based on compact Axial flux induction motors.

Sunday, May 21, 2017

New national body to drive uptake of electric vehicles in Australia

A new national body that aims to drive the uptake of electric vehicles in Australia was officially launched in Canberra today.

The Electric Vehicle Council is an industry-led organisation representing and coordinating the broader electric vehicle industry in Australia. Representing companies involved in providing, powering and supporting electric vehicles, its members sell over 350,000 new vehicles per year in Australia, and have over 6 million Australian customers.

The Minister for Energy and Environment, Josh Frydenberg, who attended the launch, announced a $390,000 grant from the Australian Renewable Energy Agency (ARENA) to support the uptake of electric vehicles in Australia.

The Electric Vehicle Council’s Chair, Behyad Jafari, said the market for electric vehicles includes significant opportunities to deliver economic investment, innovation and environmental sustainability. “While the global industry grows exponentially each year, Australia continues to miss out. In the next twelve months, almost one million electric vehicles are projected to be sold, with more than $50bn invested in the industry over the last 10 years,” he said.

“Addressing the barriers preventing the mass uptake of electric vehicles in Australia requires a consistent and collaborative effort across a range of sectors.

“In addition to introducing vehicle emission standards, key policy measures include incentivising electric vehicle purchase in the short term as the technology works to meet price parity through upfront incentives and taxation measures, as well as establishing a recommended roadmap for national public charging infrastructure.

“We welcome others from across industry, consumer groups and government to join the Electric Vehicle Council as we work to build and provide certainty for investment in the Australian electric vehicle industry.”

ClimateWorks Australia Head of Implementation, Scott Ferraro said the funding from ARENA would support a broader effort to educate and engage Australians about electric vehicles. “Globally, the number of electric vehicles sold annually is growing rapidly. However in 2014, electric vehicle sales accounted for just 0.1 per cent of new cars sold in Australia,” he said. ‘This funding will enable us to work with the Electric Vehicle Council to provide more information about electric vehicles to Australian consumers and undertake research on the best policies to drive greater uptake of electric vehicles, particularly at the early stages in order to increase model choice and infrastructure.

“The council will also publish a state of electric vehicles report annually so we can monitor progress on the transition of the Australian fleet.”

Mr Ferraro said electric vehicles provide a significant range of environment, economic and social benefits.

“When powered by renewable energy, electric vehicles are zero emission vehicles. This will help us meet our emission reduction targets faster and at lower cost, and can reduce impacts from air pollution in our cities,” he said.

Thursday, May 18, 2017

Renault & Qualcomm demonstrate dynamic wireless electric vehicle charging [VIDEO]

Renault today demonstrated dynamic wireless electric vehicle charging (DEVC), which allows vehicles to charge while driving. Renault has participated with Qualcomm Technologies and Vedecom in designing a DEVC system capable of charging an electric vehicle dynamically with a charge of up to 20 kilowatts at speeds up to, and in excess of, 100 kilometers per hour. The DEVC system has been designed to support real-world implementation of dynamic charging. The two Renault Kangoo Z.E. vehicles can pick up charge in both directions along the track.

The dynamic charging demonstrations took place at the 100-meter test track, built by Vedecom at Satory, Versailles, near Paris, within the FABRIC project. Qualcomm Technologies and Vedecom installed the primary part of the DEVC system in the test track, whilst Vedecom and Renault installed the secondary part onto two Renault Kangoos Z.E.. The DEVC system will shortly be handed over to Vedecom to perform tests for FABRIC. The tests will evaluate the operation and efficiency of energy transfer to the vehicles for a wide range of practical scenarios including vehicle identification and authorization on entering track, power level agreement between track and vehicle, speed and alignment of vehicle along track.

FABRIC is a €9 million project, mostly funded by the European Commission, addressing the technological feasibility, economic viability, and socio-environmental sustainability of wireless DEVC. The project began in January 2014 and will continue through December 2017, and is being undertaken by a consortium of 25 organizations from nine European countries, including automotive manufacturers, suppliers, service providers and research organizations from automotive, road and energy infrastructure domains. VEDECOM is one of the FABRIC collaborators and responsible for providing the demonstration of the charging solution at Satory using the Qualcomm Halo DEVC system. FABRIC’s main goal is to conduct feasibility analysis of wireless DEVC as a means of EV range extension.

“Our engineers and management have fully supported this project since the very beginning as it aligns perfectly with our focus on EVs, charging systems and mobility services,” says Luc Marbach, chief executive officer, VEDECOM. “We are a public-private partnership focused on pre-competitive research. The installation of one of the world’s first DEVC test platforms has provided us with a unique test facility and we look forward to expanding our expertise with the future testing.”

“Being part of this exciting project has enabled us to test and further research dynamic charging on our Kangoo Z.E. vehicles,” said Eric Feunteun, electric vehicle program director, Groupe Renault. “Our engineers have worked very closely with the Qualcomm Technologies and VEDECOM teams to complete the DEVC system integration demonstration as part of FABRIC. We see dynamic charging as a great vision to further enhance the ease of use of EVs, thus the accessibility of EVs for all.”

“We are inventors. We are WEVC. This dynamic charging demonstration is the embodiment of this,” said Steve Pazol, vice president and general manager, wireless charging, Qualcomm Incorporated. “I am immensely proud of what we have achieved. The combination of a global team of expert engineers and Qualcomm Halo technology, which covers all aspects of WEVC systems, irrespective of the magnetics used, has enabled us to really push the boundaries of the possible and outline our vision for future urban mobility.”

Tuesday, May 9, 2017

MotoGP set for all-electric class in 2019

The world’s most popular motorcycle racing series is adding an all-electric class. Dorna CEO, Carmelo Ezpeleta, told that an electric support series featuring up to 18 bikes could start competing as early as 2019.

Plans are under way to have an electric series on the support bill for as many as five MotoGP races in 2019, with four manufacturers having offered to supply the grid of 18 bikes.

The bikes are expected to reach speeds of around 200 km/h (124mph), making them slightly slower than the existing Moto3 bikes, while races are planned to last around 10 laps each.

Electric motorcycles have been around long enough that the MotoGP class won’t be the first time they’ve seen serious competition. What started in 2010 as a zero-emissions class at the yearly Isle of Man TT motorcycle race is now dominated by electric bikes, and they’re quickly catching up to their gas-powered counterparts.

Meanwhile in Australia the local superbike championship has run an eFXC electric Formula Xtreme class since 2011.

While Formula E relies on carbon-neutral glycerine generators to recharge its cars between sessions, Ezpeleta wants the new MotoGP support series to use solar panels.

“We want the batteries to be recharged from solar panels, not from generators like in other championships,” added Ezpeleta. “This way, we can leave something profitable for the circuits where the series races.”

Sunday, March 12, 2017

Lamborghini open to considering all-electric supercar: CEO

Lamborghini is open to an all-electric addition to its line-up of luxury sports cars, its chief executive said on Wednesday, evidence that German parent Volkswagen's interest in producing zero-emission vehicles could extend to the very top end of its brands.

The 54-year-old Italian car firm is already deviating from its tradition of producing high-powered, low-slung sportscars with its new sport utility vehicle, called Urus, itself a variation in its bovine branding.

The SUV will be launched at the company's headquarters in Sant'Agata Bolognese, Italy, towards the end of this year, with deliveries starting in the second half of 2018.

"Electrification is an area of great attention for us, but I'm not expecting it will happen in the short term," CEO Stefano Domenicali told Reuters at the Geneva car show, ruling out a purely battery-powered Lamborghini before 2025.

"We need to be realistic," he said, pointing to the need to preserve the characteristics of a supercar in terms of handling, weight and performance even in an electric model, while at the same time considering its cost and the required investments.

Lamborghini, one of VW's stable of superluxury brands along with Bentley and Bugatti, already plans to bring a plug-in hybrid version of the Urus SUV by 2020.

Separately, the CEO held out the prospect of another record year for Lamborghini in 2017, powered by undiminished demand for super-luxury cars in the United States, China and Europe.

The company was showing its new Huracan Performante in Geneva ahead of first deliveries in June, with the level of pre-orders already looking good, said Domenicali, the former head of Ferrari's Formula One racing team.

The Huracán's Active Electronic Stability Control, believed to be the most advanced in the auto industry, keeps the car remarkably stable through every twist and turn and no doubt contributed significantly to the much debated recent Nurburgring lap record.

The aeronautics style triple gyroscope, triple accelerometer inertial platform is the brain controlling the dynamic steering unit which adjusts the steering ratio, the magnetic ride control operating the suspension system, power flow through a Haldex gen V hydraulic centre differential four-wheel drive and brake torque vectoring systems.

Adapting Lamborghini's inertial platform to an AWD electric powertrain would unlock an entirely new level of high performance active dynamic control.

"Since the financial crisis, the market for super sports cars has seen a constant recovery," he said.

"For the medium term, I don´t see a change in that substantially positive trend, especially since economic regions like the U.S. and China are showing unchanged growth."

Domenicali said he expected sales this year to increase by a single-digit percentage rate from last year's record 3,457 deliveries.

Future shipments for sportscars would be capped at around 3,500 a year but could go slightly higher as the market expands to a maximum of 3,800, to safeguard the brand's exclusivity, he added, although the Urus SUV could double overall production volumes.

"We will be prudent. Of course we will grow sustainably, but being in the luxury market we must not take every growth potential that is there," he said.

Depending on demand the Urus could add at least another 3,500 vehicles to Lamborghini's total output, he added.

Saturday, March 11, 2017

Tesla Model 3 prototype driving around SpaceX backlot [VIDEO]

Video of a Tesla Model 3 prototype cruising up and down the street in Hawthorne California has been uploaded to Youtube by one of SpaceX's neighbours, Tesla body kit outfit unpluggedperformance.

Tesla reported in a stock filing that at year-end 2016, it had not yet put a Model 3 beta test car on the road. This 'leaked' video looks like a staged response to accusations earlier this month that Tesla still may not have a Model 3 beta test car on the road, despite the fact deliveries are slated to begin in mid-2017.

While Tesla has said the completion date for the Model 3 Beta Prototype is March 31st, it looks pretty obvious the car in this video is one of the alpha fleet unveiled at the Model 3 launch 12 months ago.

Wednesday, February 15, 2017

Carbridge Australia to build 40 more Battery Electric Buses

In addition to the six battery powered buses launched in December last year, Australian bus manufacturer and operator Carbridge will build a fleet of forty more EV Buses in partnership with Gemiland coachworks and BYD.

The contract was signed at the end of January, three months after the first BYD powered Electric Blu bus made its commercial debut at Sydney Airport.

BYD Asia Pacific auto sales division general manager Liu Xueliang says the organsation is proud to be supplying electric bus components to Carbridge.

"We are the first Chinese company to crack Australia’s electric bus market, having come a long way since the trial of our electric buses at the country’s busiest airport in Sydney in late 2014," he says.

The Electric Blu Toro buses, manufactured by a joint venture between BYD & Carbridge, feature custom Gemiland bus-bodies fabricated from aero-grade aluminium for significant weight reduction. The BYD chassis comprises a ZF front axle and a ZF clone rear axle featuring dual 90 kW / 350 Nm water cooled permanent magnet wheel-hub traction motors.

Energy storage is a 324 kWh BYD iron phosphate battery with the pack split between the forward roof and rear engine compartment zones connected in parallel for a bus voltage of 400 vdc.

The Electric Blu bus has a carrying capacity of 70 passengers with a range of 500 kilometres, making up to 100 transfer journeys on a single charge.

The fleet of six currently in operation at Sydney Airport is also estimated to lower carbon emissions by 160,000 kilograms a year, reduce waste fluids and noise levels.

Friday, December 23, 2016

Sydney Airport Launch new Electric Bus Fleet for 2017

EV News was recently invited to preview the largest fleet of electric buses in Australia. Built by airport bus operator Carbridge in partnership with Gemiland coachworks and BYD, the new fleet of six battery powered buses are owned by Sydney Airport Corporation Limited as part of a $5 million investment in environmentally friendly ground transportation technology.

With a carrying capacity of 70 passengers, each bus has a range of 500 kilometres, making up to 100 transfer journeys on a single charge. The fleet will provide transportation for over two million travellers, visitors and airport workers who use the Blu Emu shuttle service every year.

The Electric Blu Toro buses, manufactured by a joint venture between BYD & Carbridge, feature custom Gemiland bus-bodies fabricated from aero-grade aluminium for significant weight reduction. The BYD chassis comprises a ZF front axle and a ZF clone rear axle featuring dual 90 kW / 350 Nm water cooled permanent magnet wheel-hub traction motors. A maximum motor shaft speed of 7,500 rpm coupled to the rear wheels via a two stage 17.7 to 1 planetary gear hub provides surprisingly rapid acceleration and a top speed of 70 km/h.

Energy storage is via a 324 kWh BYD iron phosphate battery with the pack split between the forward roof and rear engine compartment zones connected in parallel at a bus voltage of 400 vdc. Dual BYD 40 kW Mennekes Type 2 AC chargers provide 80 kW fast charging via the dual traction inverters. Currently 6x grid connected charging stations top up the fleet overnight but solar power is the long term plan.

The new electric blu buses will replace the airport’s existing diesel bus fleet servicing the 7 km shuttle route between the T2/T3 terminal precinct and the Blu Emu Car Park.

Monday, December 12, 2016

The Chevy Bolt EV requires ZERO maintenance

Not only do electric vehicles cost literally cents per kilometre to drive, (or fractions of a cent per km with roof-top PV) but they also revolutionise car servicing. The maintenance schedule for Chevrolet's soon to be launched Bolt electric hatchback comprises tire rotation every 12,000 km (7,500 miles) and that's about it. If a wheel alignment is performed with every new set of tires then rotation can be skipped which means the Bolt requires practically zero maintenance.

Chevrolet does recommend a coolant system flush @ 240,000 km (150,000 miles) and replacing the brake fluid every five years but that's it. Typical consumable parts like brake pads and rotors can be expected to last in excess of half-a-million km (~300,000 miles)

And that's only the tip of the iceberg. What goes unsaid is that in EV applications electric motors practically last forever. The international standard for rating motor insulation is based on a half life of 20,000 hours. For every 10c increase in insulation rating life expectancy doubles. For example, the insulation systems of a class H (180c) motor that runs at 150c would lose half it's mechanical strength after 160,000 hours. Power electronic components such as those found in motor inverters are typically rated at up to 100,000 hours.

To put that into context, with average annual motoring of 15,000 km @ an average speed of 60 km/h, a typical EV motor will comfortably cover a minimum 1.2 million kilometres, or 80 years of maintenance free reliable motoring.

No wonder auto dealerships hate selling EVs!