Search 3500+ EV News articles

Monday, November 24, 2014

First Audi A3 Sportback e-tron plug-in hybrid drive off the assembly line in Ingolstadt

Production of the Audi A3 Sportback e-tron: Assembly – On the engine and component assembly line, the electric motor and transmission are fitted to the engine.

Approximately 50 cars every day, with the same timing and on the same assembly line as the other models: Audi is now ramping up production of the Audi A3 Sportback e-tron*. The premium manufacturer is producing its first plug-in hybrid model at the brand's main plant in Ingolstadt.

"We started series production of the Audi A3 Sportback e‑tron in the summer," said Dr. Hubert Waltl, Board of Management Member for Production at AUDI AG. "Most of the assembly work is integrated into the A3 line; no separate manufacturing is necessary. That demonstrates the flexibility and efficiency of our production planners and employees."

With the Audi A3 Sportback e‑tron, Audi is launching the mobility of the future. The compact five‑door combines a 1.4 TFSI combustion engine with a 75 kW electric motor, resulting in a total system output of 150 kW (204 horsepower). Despite the sporty driving performance, fuel consumption in the NEDC is just 1.5 liters per 100 kilometers (35 grams of CO2 per kilometer). The A3 Sportback e‑tron can travel up to 50 kilometers in purely electric mode and up to 890 kilometers more with the gasoline engine.

"We first of all ramped up production of the A3 Sportback e‑tron to about 30 cars a day in September," explained Board of Management member for Production Waltl. "Our peak is approximately 50 units each day now. In any case, we are keeping additional capacity available."

Peter Kössler, head of the Ingolstadt plant, stated: "Working with high‑voltage systems in series production was a new challenge for us, but we mastered it well. At all stages of assembly, we achieve maximum levels of safety for our employees and quality for our customers."

Safety is given top priority during the entire assembly process. All the employees who come into contact with the A3 Sportback e‑tron have received technical safety instructions for the new technology; some employee who are directly involved are qualified as specialist electricians for automotive technology.

Sydney International Airport Tests the World’s Longest Range Electric Bus

Carbridge Pty Ltd, an Australian airport ground transportation provider, has begun a six-month Electric Bus pilot program at Sydney International Airport. The bus selected for the pilot was made by BYD Company Ltd, which has been recognized over the past few months for its industry leading operational range. The bus will be used as an airport passenger shuttle.

At a launch ceremony held at Sydney International Airport, BYD Asia Pacific General Manager Liu Xueliang said, “Compared with fossil-fueled buses, BYD’s pure electric bus has zero emissions, doesn’t make noise and ensures a comfortable ride without disturbances associated with conventional buses of combustion engines. These characteristics will provide a great experience for visitors to the Airport.” Sydney Airport plans to electrify their entire bus fleet in the coming years.

BYD’s Battery Electric bus employs many advanced technologies developed in-house by a staff of more than 15,000 R&D engineers, such as the advanced environmentally friendly, BYD Iron-Phosphate battery, in-wheel hub motors and regenerative braking system. The break-through Iron-Phosphate battery is fire-safe and non-toxic: there are no caustic materials contained in the battery, no toxic electrolytes or heavy metals and can be completely recycled.

The BYD electric bus delivers a host of operational and environmental benefits for public transport riders, operators and people in the community — it is very quiet and ensures a comfortable ride without vibrations, jerks or noise associated with the conventional buses and combustion engines. The bus can also drive for more than 250 km (155 miles) even in heavy city traffic on a single charge. The bus has completed more than 20 million kilometers of “in revenue service” and has been evaluated in many major cities all over the world.

GM to Study Vehicle Sharing with Shanghai Jiao Tong University

General Motors China has signed a memorandum of understanding with Shanghai Jiao Tong University to collaborate on a vehicle sharing program featuring the Chevrolet EN-V 2.0 starting next year.

A fleet of EN-V 2.0 vehicles will be integrated with a multi-modal transportation system alongside bicycles, cars and shuttle buses at the university’s Minhang campus in Shanghai to evaluate the benefits and challenges of a vehicle sharing transportation model.

“The vehicle sharing program with Shanghai Jiao Tong University will allow us to assess the real-world application of the EN-V 2.0 as part of a vehicle sharing system,” said Matt Tsien, GM executive vice president and president of GM China. “We will apply these learnings to the development of future urban mobility transportation solutions, not just for China but for the world.”

"Electric vehicles represent the transportation mode of the future, but the big topic now is how to develop them," according to Yin Chengliang, vice president of the Shanghai Jiao Tong University Automotive Engineering School. "This project will explore a model that integrates electric vehicles with the transportation network and intelligent transportation system."

The Chevrolet EN-V 2.0 is the next generation of GM’s original Electric Networked-Vehicle (EN-V), which made its global debut at Expo 2010 in Shanghai. It can travel up to 40 kilometers on a single charge.

The Shanghai Jiao Tong University collaboration is a continuation of GM’s vision for sustainable urban mobility announced at Expo 2010. Shanghai Jiao Tong University is a comprehensive research-oriented university and one of China’s leading educational institutions. GM and Shanghai Jiao Tong University have collaborated on many automotive, training and development projects over the past two decades.

Porsche Readying Tesla Model S Fighter

The German automaker is currently in the early stages of development for an EV that will target the Tesla Model S and will be a new dedicated fifth model range slotting beneath the existing Panamera. While details on Porsche’s first all-electric production vehicle are mostly being kept under wraps at the moment, it will likely be built on the automaker’s second-generation MSB platform that underpins the current Panamera.

It will have a shorter wheelbase than the existing Panamera sedan but will be a five-door hatchback, similar in style to the Panamera Sport Turismo concept that debuted at the 2012 Paris Motor Show. The company is hoping to keep it around 2,100 kg and its electric powertrain will provide similar performance as the Model S, though Tesla did just announced the more powerful all-wheel drive Model S P85D.

Porsche is aiming for a range of over 450 km and the company is expected to work with Audi, so we expect they will also use solid-state batteries.

Audi Confirm Tesla Model S Rival with 450 km Range for 2017

According to a report by Auto Express, Audi is also looking to join the electric vehicle sedan market with its own offering sporting a 450 km (280-mile) all-electric range.

The vehicle is currently under development according to Audi’s Dr. Ulrich Hackenberg, who also revealed that it will arrive in 2017 as an all-new model.

In the interview, Hackenberg said that he was “able to re-engineer the R8 e-tron project and technology with the team” and confirmed that it will not be a sports car.

The German automaker will use next-generation batteries in order to achieve the 450 km range, technology that is said to have up to five times more energy density than the current batteries used in vehicles such as the Volkswagen e-Golf.

Tesla in talks with BMW over battery & component alliance

Tesla Motors is in talks with Germany's BMW over a possible alliance in batteries and light-weight components, Tesla's Chief Executive Elon Musk told German weekly Der Spiegel.

In an interview published on Sunday, Musk described BMW's production of carbon fibre reinforced car body parts as "interesting" and "relatively cost efficient."

BMW uses carbon fibres from its joint venture with materials supplier SGL to make reinforced passenger cell parts for its i3 electric hatchback and i8 plug-in hybrid sports car.

Officials at BMW were not immediately available to comment.

"We are talking about whether we can collaborate in battery technology or charging stations," Musk was quoted as saying in the interview. He also told the magazine that he thinks Tesla will have a battery plant in Germany in 5-6 years.

A spokeswoman for Tesla Germany later described the discussions as informal.

“The conversation between Elon Musk and BMW has been a casual conversation, and not about a formal cooperation,” spokeswoman Kathrin Schira said.

There were no further details on the specific nature of the alliance, however BMW and Tesla executives already met in June to discuss the creation of charging stations usable for different types of electric cars.

Rival Daimler, owner of the Mercedes brand, said last month it would continue to collaborate with Tesla even after selling its remaining four percent stake in the U.S. company. Tesla has also worked with Toyota on electric SUVs.

Tesla's billionaire co-founder Musk also told Der Spiegel that he expects Tesla to have a battery production plant in Germany in five to six years.

Friday, November 21, 2014

Korean Companies Taking Lead in EV Battery Market

An increasing number of carmakers such as Nissan and Daimler are opting for Korean battery manufacturers’ products instead of doing the lithium-ion secondary battery business on their own. The trend is expected to be a boon for LG Chem, Samsung SDI, and SK Innovation in the fledgling eco-friendly car battery market.

The only German factory that produces battery cells for electric cars is closing. Within little more than one year, the company Li-Tec in Saxon Kamenz, will cease manufacture of battery cells. The company is a subsidiary of the Daimler Group.

The Li-Tec factory will close December 2015 but will be retained as a research location; the majority of the 280 employees will be transferred to the Deutsche Accumotive—also a wholly owned Daimler subsidiary—which manufactures battery packs. Accumotive is currently expanding its production capacity to build systems for the next generation of the electric smart among others. Cells are slated to come from LG Chem.

“Nissan has purchased EV batteries from AESC since 2009, but will diversify the supply sources to LG Chem and many more,” Renault Nissan Alliance Chairman Carlos Ghosn said in September. It is said that AESC’s products are approximately 15 percent more expensive than those of LG Chem.

These decisions come about because it is difficult for a company to realize the economy of scale and achieve price competitiveness on its own in the eco-friendly vehicle market. Battery manufacturers that have produced small batteries for use in smartphones and the like have more advanced technological strength, too. It is in this context that Hyundai Motor Company, Kia Motors, and BMW have procured battery cells from external sources from the get go.

At present, LG Chem’s customers include not only Hyundai and Kia but also about 20 automakers such as GM and Ford. Samsung SDI has done business with about 10, including BMW, as well. SK Innovation, which started relatively late, has supplied batteries for Kia Motors’ Soul EV, and set up a joint venture in China with the Beijing Automotive Group. The EV battery market is estimated to grow to US$11.9 billion by 2018.

Wednesday, November 19, 2014

ELMOFO enter final round of the 2014 Australian eFXC Superbike Race Series

ELMOFO will have an entry in the last round of the 2014 Australian eFXC Superbike Race Series this weekend in the form of a recently purchased Brammo Empulse TTX.

This particular bike has enjoyed a lot of success in the US in the hands of Eric Bostrom. The ELMOFO team will have local pro-rider Simon Galloway to race the bike in an effort to promote Brammo production bikes in Australia.

There should be a good mix of bikes at the final round at Eastern Creek including some modified production along with some super-high-powered privately built bikes.

Tuesday, November 18, 2014

SUBARU VIZIV GT Vision Wheel-Motor powered series hybrid concept [VIDEO]

Subaru has revealed the digital-only Viziv GT Vision Gran Turismo, which will find its way into the Gran Turismo 6 on the PlayStation 3 video game system . It takes up the mantle from the Viziv Concept that debuted at the Tokyo motor show last year.

The virtual Viziv GT is powered (virtually) by a 2-liter boxer four featuring both direct injection and turbocharging to the tune of 591 imaginary horsepower.

The Viziv GT has all wheel drive with little lights over each fender that light up when the axle is receiving torque vectoring courtesy of three electric motors, one up front and two in the rear. Subaru compares it to their iconic "Symmetrical AWD" in an attempt to link it to their road-going cars, but this is a hybrid system unlike anything the company has previously worked on.

“By independently controlling each of the motor outputs, turning ability while cornering is drastically improved, while the torque vectoring lamps built into the fenders visualize its movement, Thus, as with any other Subaru, the car is made controllable for anyone driving the car, regardless of its extremely high performance levels.”

Maybe it's where the company is headed? Mitsubishi is already going down that road. Perhaps this is a sneak peek at a hybridized, CUV-like future for the iconic WRX and STI. Or it could just be a digital flight of fancy, which of course it is.

Monday, November 17, 2014

Next Generation GS Yuasa lithium-ion battery triples energy density

GS Yuasa Corp. said Monday it has developed a next-generation lithium-ion battery with three times the capacity of existing products.

The battery uses sulfur as a key material for the positive electrode. The Kyoto-based company now aims to improve the durability of the silicon-based negative electrode, so it can commercialize the next-generation lithium-ion battery by 2020.

Sulfur is harmless to humans, cheap and found in abundance in nature. But it does not conduct electricity, making it difficult to obtain strong electric output from batteries using sulfur-based electrodes.

GS Yuasa succeeded in discharging the high-capacity battery by filling sulfur into small holes on carbon rods in order to make the element conductive, the company said.

“This battery can be manufactured at a lower cost,” said Shuji Hitomi, group manager at GS Yuasa’s research and development center. “If it is used in a car, the range (without recharging) would be greatly increased.”